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1 Introduction

Functional differential equations with delay is a hereditary system in which the rate of
change or the derivative of the unknown function or set-function depends upon the past
history. The functional differential equations of neutral type is a hereditary system in
which the derivative of the set-function is determined by the values of a state variable
as well as the derivative of the state variable over some past interval in the phase
space. Although the general theory and the basic results for differential equations have
now been thoroughly investigated, the study of functional differential equations has
not been complete yet. In recent years, there has been an increasing interest for such
equations among the mathematicians of the world. The study of functional abstract
measure differential equations is very rare.

The study of abstract measure delay differential equations was initiated by Joshi
[6], Joshi and Deo [7] and Shendge and Joshi [11] and subsequently developed by
Dhage [1]-[3]. Recently, the authors in [4] proved existence and uniqueness results for
abstract measure differential equations, by using Leray-Schauder alternative [5], under
Carathéodory conditions. In this paper, by using the same method, we extend the
results of [4] to a system of abstract measure delay differential equations. In that our
approach is different from that of Joshi [6]. The results of this paper complement and
generalize the results of Joshi [6] on abstract measure delay differential equations under
weaker conditions.
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2 Preliminaries

Let IR denote the real line, IR" an Euclidean space with repect to the norm |-|,, defined
by
|z|, = max{|z1],..., |z,|} for == (xq,...,2,) € R" (1)

Let X be a real Banach space with any convenient norm || - ||. For any two points
x,y in X, the segment 7y in X is defined by

g={ze€X|z=a+r(y—2),0<r <1}

Let 2o and yo be two fixed points in X, such that 0y, C 0x(, where 0 is the zero
vector of X. Let z be a point of X, such that 0z C 0z. For this z and 2 € 7z, define
the sets S, and S, as follows

Sy ={rz:—oco<r<1}

and
Sy ={rr:—oco<r <1}

For z1,xs € Yoz, we write x1 < xo (or xo > 1) if Yoz7 C YoTz. Let the positive
number ||zo — yo|| be denoted by w. For each = € Tgz, z > x, let z,, denote that
element of 75z which

Ty < T, ||z — 24| = w.

Note that, z,, and wx are not the same points, unless w = 0 and x = 0.

Let M denote the o-algebra of all subsets of X so that (X, M) becomes a measurable
space. Let ca(X, M) be the space of all vector measures (signed measures) and define
anorm || - || on ca(X, M) by

9]l = [pla(X) 2)

where |p|, is a total variation measure of p and is given by
[pln(X) = Z Ip(Ei)|n, VE; C X. (3)
i=1

It is known that ca(X, M) is a Banach space with respect to the norm || - || defined
by (2). Let p be a o-finite measure on X and let p € ca(X, M). We say p is absolutely
continuous with respect to the measure p if p(E) = 0 implies p(E) = 0 for some
E € M. In this case we write p << p.

For a fixed 2y € X, let My be the smallest o-algebra on S,,, containing {z¢} and
the sets S, x € YoTo. Let z € X be such that z > z¢ and let M, denote the o-algebra
of all sets containing M, and the sets of the form S, for € Tgz. Finally let Lb(SZ, R)
denote the space of all p -integrable nonnegative real-valued functions h on S, with
the norm || - [|1 defined by

il = / h()] dp.
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3 Statement of the problem

Let u be a o-finite real measure on X. Given a p € ca(X, M) with p << p, consider the
abstract measure delay differential equation (in short AMDDE), involving the delay w,

ET f(:E?p(gx)vp(gxw))v a.e. [:u] on  IToz, (4)
p(E) =q(E), E € M,
where ¢ is a given known vector measure, dp/du is a Radon-Nikodym derivative of p

with respect to u and f : S, x R x IR" — IR" is such that f(z,p(S,),p(Ss,)) is
p-integrable for each p € ca(S,, M.,).

Definition 3.1 Given an initial real measure ¢ on My, a vector p € ca(S,, M,) (z > z)
is said to be a solution of AMDDE (4) if

(i) p(E) = q(E), E € My,
(1) p << ju on Tgz,
(1ii) p satisfies (4) a.e. [u] on Toz.
Remark 3.1 The AMDDE (4) is equivalent to the abstract measure integral equation

(B) = { [ (2, p(S2), p(Sa,))dp, E € M., ECTgz
- Q(E)7 E e M.

A solution p of AMDDE (4) on Tz will be denoted by p(S.,, q)-

In the following section we shall prove the main existence theorem for AMDDE (4)
under suitable conditions on f. We shall use the following form of the Leray-Schauder’s
nonlinear alternative. See Dugundji and Granas [5].

Theorem 3.1 Let B(0,r) and B[0,r] denote respectively the open and closed balls in a
Banach space X centered at the origin O of radius r, for somer > 0. Let T : B[0,r] — X
be a completely continuous operator. Then either

(i) the operator equation Tx = x has a solution in B[0,r], or

(ii) there exists an uw € X with ||u|| = r such that w = XT'u for some 0 < A < 1.
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4 Existence and Uniqueness Theorems

We need the following definition in the sequel.

Definition 4.1 A function 3 : S, x IR" x IR" — IR" s said to satisfy conditions of
Carathéodory or simply it is Carathéodory if

(i) x — B(x,y, z) is p-measurable for each (y,z) € IR™ x IR™.
(ii) (y,z) — B(x,y, z) is continuous for almost everywhere  on x € Toz, and

(111) for each given real number p > 0 there exists a function h, € L}L(SZ,IR) such
that

1B(z,y, 2)| < hy(x) a.e. [p| v €Tpz, foreach y,z € IR with |y| < p, |z| < p.

We consider the following set of assumptions.

(A1) For any z > xg, the o-algebra M, is compact with respect to the topology gen-
erated by the pseudo-metric d defined by

d(EhEg) = |/L‘n<E1 A EQ), E17E2 c Mz-

u({z0}) = 0.

)
A3) ¢ is continuous on M, with respect to the Pseudo-metric d defined in (Al).
) The function f(z,y, 2) is L,-Carathéodory.

)

There exists a function ¢ € L},(S.,IR*) such that ¢(z) > 0 a.e. [u], z € S, and
a continuous and nondecreasing function 1 : [0, 00) — (0, 00) such that

[f (2,9, 2)[n < d(2)(max {[yln, [2]n}) ae. [p] on Toz, Vy e IR",Vz e IR",

Theorem 4.1 Suppose that assumptions (A1)-(A5) hold. Further if there exists a real
number r > 0 such that

r> gl + ol g (r) ()
then AMDDE (4) has a solution on M,.

Proof. Let X = ca(S,, M,) and consider an open ball B(0,r) in ca(S,, M) centered
at the origin and of radius r, where the real number r > 0 satisfies (5). Define an
operator T from B[0,r] into ca(S,, M) by

[ f(@,p(S2),p(Ss,))dp, E € M, EC Tz

Tp(E) = {
q(E), E € M,.
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We shall show that the operator T satisfies all the conditions of Theorem 3.1 on
B[O, 7].

Step I: First we show that T is continuous on B[0,7]. Let {p,} be a sequence
of vector measures in B[0,r| converging to a vector measure p. Then by Dominated
Convergence Theorem,

imTp,(E) = lim [ f(2,pa(S,).pa(S0,))dn

forall E € M,, E C Tpz. Similarly if £ € M, then

lin Tp, () = 4(E) = Tp(E)

and, so T is a continuous operator on B[0,r].

Step II: Next we show that T'(B[0,r]) is a uniformly bounded and equi-continuous
set in ca(S,, M,). Let p € B|0,r] be arbitrary. Then we have ||p|| < r. Now by the
definition of the map 7" one has

[ f(@,p(S:),p(Ss,))dp, if E€ M., EC Tz

Tp(E) = { .
q(E), it £ e M.

Therefore for any £ = FUG,F € My and G € M,, G C Tyz, we have

|nmmns|«mu+éuum®@mammM
|w+/ﬁ@wwmwﬁmmwagmmM
snw+/¢ H(lpl)d

< llall+liolleye(r)

IA

for all £ € M,. By definition of the norm || - || we have

ITpll = |Tpln(S:)
< gl + el (r)-

This shows that the set T'(B[0,r]) is uniformly bounded in ca(S,, M.).
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Now we show that T'(B[0,r]) is an equi-continuous set in ca(S,, M,). Let Ey, Ey €
M.,. Then there are sets Fy, Fy € My and G, Gy € M, with Gy, Gy C Toz, and

FENnGg, =0, i=1,2.
We know the set-identities
G1=(G1 —G)U(GaNGy) and Gy = (Gy —Gh) U (GaNG). (6)
Therefore we have

Tp(Ey) —Tp(Ey) = q(F1) —q(F2)
n / £, p(5.),p(Ss,))dpi — / £(2,p(52), p(Ba )it
G1—Go

G2—G1

Since f(z,y, z) is Li— Carathéodory, we have that

[ Tp(Er) — Tp(Ey)ln < ‘Q(F1>_Q(F2)‘n+/GAG [f (2, 2(S2), Pa(Sa,,)) lndpe

< |q(R) - q(F)] + /G e

Assume that d(Ey, Es) = |p|n(E1 A Ey) — 0. Then we have Ey} — E, and conse-
quently Fy — Fy and |u],(G1 A G3) — 0. From the continuity of g on M, it follows
that

Tp(Ey) — Tp(B)lw < |a(Fy) — a(Fy)ln + / o () dp
G1AGs
— 0 as E; — Es.

This shows that T'(B[0,7]) is an equi-continuous set in ca(S,, M,). Thus T(B]0,1])
is uniformly bounded and equi-continuous set in ca(S,, M), so it is compact in the
norm topology on ca(S,, M,). Now an application of Arzeld-Ascoli Theorem yields that
T(B[0,r]) is a compact subset of ca(S,, M,). As a result 7' is a continuous and totally
bounded operator on B0, r]. Hence an application of Theorem 3.1 yields that either

x = Tz has a solution or the operator equation x = ATz has a solution u with ||ul| =r
for some 0 < A < 1. We shall show that this later assertion is not possible. We assume
the contrary. Then there is an u € X with ||u|| = r satisfying v = AT'u for some

0 < A< 1. Now for any F € M,, we have E = F UG, where F' € My and G C Tz
satisfying F NG = ().
Now

)\(](F) Fe MQ

u(E) = NTu(E) = { _ _
A S flz,u(Ss), u(Se,))dp, G e M.,G C Tgz.
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Therefore

u(B)l, = |Aq<F>\n+]A / f<x,u<?m>,u<§xw>>du]

< gl + G¢($)¢(||U||)d/t
= llall+ llollzy e (llul).
This further implies that
lull = Juln(S2) < llall + ol ((lul)-
Substituting ||u|| = r in the above inequality, this yields
r < gl + llell (),

which is a contradiction to the inequality (5).
Hence the operator equation p = T'p has a solution v with ||v]| < r. Consequently
the AMDDE (4) has a solution p = p(S,,,¢q) in B[0,r]. This completes the proof.

To prove the uniqueness theorem, we consider the following AMDDE

j—; = 9(2,7(5,),7(5..)) ae. [u] on Tz

r(E) =0, E€ M,,

(7)

where g : S, x IR x IR" — IR" and g(z,7(S,),r(S,,)) is p-integrable for each
r € ca(S,, M,) with r > 0, and ¢(z,y, z) is nondecreasing in y, z almost everywhere [1]
on Tgz.

Theorem 4.2 Assume that the function g satisfies all the conditions of theorem 4.1
with the function f replaced by g. Suppose further that
|f(@,y,2) = f(z, 91, 20) |0 < 9(2, [y — Yi1ln, |2 — 21]n) a.e. [p] on Tz

and the identically zero measure is the only solution of AMDDE (7) on M,. Then
AMDDE (4) has at most one solution on M,.

Proof. Suppose that AMDDE (4) has two solutions, namely p; and py on M,. Then
we have

m(E) = g(F) + /G F (. p1(52), p1 (B )
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and

pa(E /f ,p2(S4), p2(Sz,,))dpt,

forall E € M, with E=FUG, F € My, G CTpz and FNG = (. Now

n(E) =m(E) = [ (.m0 /prz ), pa(S.))dp
- /G ()91 (Ban)) — £, p2(5). 2B )il

Therefore,

P(E) =Bl < [ 1 (52 1(50)) = £ pa(Se) (e
< / g(z, |p1 _p2|n(§$),|p1 _p2|n(§xw))d,u.
G

Since AMDDE (7) has a identically zero function on M., one has ||p1 — ps| = |p1 —

P2|n(Sz) = 0= p1 = po.
Therefore AMDDE has at most one solution on M,. This completes the proof.

5 Special case

In this section it is shown that, in a certain situation, the AMDDE (4) reduces to an
ordinary differential-difference equation

Yo )yl —w), x>

?/( ) =g(x), € [ro—w, ),

(8)

where ¢ is continuous real function on [z¢ — w, 2|, and f satisfies Carathéodory con-
ditions.

Let X = IR, = m, the Lebesgue measure on IR, S,, = (—00,z], r € IR, and ¢q a
given real Borel measure on Mj. Then equation (4) takes the form

dp
% = f(:L‘,p((—OO,ZE]),p((—OO,ZE - w]))? (9)

p(E) = Q(E)7 IONS MO-

It will now be shown that, the equations (8) and (9) are equivalent in the sense of
the following theorem.

Theorem 5.1 Let q({z}) =0, z € [xg — w, x0). Then
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(a) to each solution p = p(Sy,,q) of (9) existing on [xo,x1), there corresponds a
solution y of (8) satisfying

y(x) = g(x), = € [rg — w,x0)].

(b) Conversely, if g is a continuous function of bounded variation on [rg — w, x),

then to every solution y(x) of (8), there corresponds a solution p(Sz,,q), of (9)
existing on [xg,x1) with a suitable initial measure q.

Proof. (a) Let p = p(S4,,q) be a solution of (9), existing on [z, z1). Define a real
Borel measure p; on IR as follows.

0, if v <xg—w,
pi((=00,2)) = § p((=00,2]) = p((=00, 20 — w]), i xo —w < <y (10)
p((—00, z1)), if @ > a1,
and
m(E)=p(E), it EC[rg— w,x1).
Define the functions y;(x), y(x) and g(z) by
yi(x) = pi((—o0,2)), relR
y(x) =wyi(z)+p((—o0, 29 —wl]), € [xg—w,x1)

and

9(x) = y(z), € [xo —w, 0],
The condition ¢({z}) = 0, x € [rg — w, x|, the definition of the solution p, and the
definitions of y(z), g(z) imply that

pi({z}) = p({z}) = 0, = € [wo — w,zo].

Hence by [8] (Theorem 8.14, p. 163) g is continuous on [xg — w, o).
Now for each = € [xg — w, z1) we obtain from (10) and the definition of y(x)

y(@) = yi() + p((—00, x0 — w])
= p1((=00,2)) + p((—00, 70 — w]) (11)

= p(Se.)-

Since p is a solution of (9) we have p << m on [zg,21). Hence y(z) is absolutely
continuous on [xg,z1). This shows that y'(z) exists a.e. on [zg,z1). Now for each
x € [xg, 1), we have, by virtue of (11) and (9)

p([xo,w])Z/[ ](dp/dm)dm,
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that is, )
p«—WJﬂ—p«ﬂwwd%i/ﬁmMmmm.

zo

This further implies that

Min:mam+/QUm64m@u»w

That is .
M@=y®w+/1ﬁw®w@—wﬂt

Hence
Y (@) = fla,y(x),y(z —w)) ae on [z,z1).
This proves that y(z) is a solution of (8) on [xg,z;) satisfying
y(x)=yg(z), z€lrog—w,x.

(b) Let y(x) be a solution of (8) existing on [z, 1], where g is continuous and of
bounded variation on [xg — w, xg]. Define the function g; on IR as follows.

0, if v <2y —w,
gi(z) = 9(z) —glzo —w), ifzg—w<a<w (12)
g(xo) — g(xog —w), if x> x.

Clearly g; € NBV (where NBV is the class of left continuous functions ¢ of bounded
variation such that ¢(x) — 0 as © — oo). Hence by [8] [Theorem 8.14, p. 163] there
exists a real Borel measure ¢; on IR, such that,

01((=00,2)) = g1(). (13)
Let us now define the initial measure ¢ on M, as follows.
q((=00,2]) = (=00, 7)) + g(wo — w), = € [wy — w, o],
A(E) = q(E), EC[zo—w, o]
From (12), (13) and the definition of ¢ we have
4(Sz,) = 4((—00,2]) = g(x), x € [10 — w, xo).

Similarly corresponding to the function y(z) which is a solution of (8) on [zg, z1),
we can construct a real Borel measure p on M,,, such that,

p(E)  =q(E), if E e M,
(14)

=N
9]
8
g

I

y(x), = € [xg,x1).
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Since y(z) is a solution of (8) we have for x € [z¢, x1)

y(x) = ylo) + / " F ().t — w))dt.

Hence by (14) it follows that

p(garw) - p(garo) = f(t7p(§t)7p(§tw))dm

[z0,2]
That is
p([wo, 7]) = f(t,p(Se), p(St,))dm.

[$(),:L‘}

In general, if £ € M,,, E C Toz1, then

p(E) = /E £t p((—00, 2], p((—00, 2 — w]))dm.

This shows that p is a solution of (9) on [zg,z;) and the proof of (b) is complete.

Remark 5.1 In proving (b) part of the above theorem we required g € BV. That is not
surprising, since gy is constructed from g, such that, g € NBV.

Remark 5.2 Theorem 5.1 shows that our results for the equation (4) are general in
the sense that they include the corresponding results for the equation (8).

Remark 5.3 If we allow w to be zero then gxw = gxo for each x > x¢. Hence if we
define the initial measure q by

Q(gxo) = Q, Q(E) =0 E# gﬂﬁm
the equation (4) takes the form

which is the AMDDE studied in [9], [10]. Thus our results include as particular cases,
the results in [9], [10].

6 Examples

Example 1. Let X = IR, S, = (—o00,7], 70 = 0,w = 2 and M, be the o-algebra
defined on (—o0, 0]. Define an initial measure ¢ on My as follows

gB) = > 2 HEN{-1,-2}#0
neEN{-1,-2}

— 0, if EN{-1,-2} = 0.
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Define a real measure p by

wE) = > 3— if ECIR,ENN #0
neNN(E)
=0, if ENN = 0.

where NN is the set of natural numbers. Consider the AMDDE

j—i = p(5.) + p(Bs_a), (15)
W(E) = oE), Ee M (16)

The above AMDDE is equivalent to

p(E) = { Jep(Sa)dp + [ p(Se—2)dp, E C [0,00),

p(E) =q(E), E € M. o

It is not difficult to show that the operator T" defined by the right hand side of (17) is a
contraction on ca(R, M) with the usual total variation norm. Hence AMDDE (15)-(16)
has a unique solution on [0, c0).

We also observe that

p(E) = )+ /01] /

= 4(S0) + PG +p(5)l{1})
= 14 5p(5)(1/2)
— 3/2.

p(S2) = p(§1)+/(12] /

= p(S1) +p(S2) ({2}) p(So)n({2})

3 1
= 14+-+ p(51)+—

Similarly

2 12
= 19/12.
Thus we have 3 ; .
p(So) = T p(S1) = 37 p(So) = 3 and so on.

It is easy to verify that the sequence {p(S,)}, n =0,1,2,3,...is convergent, show-
ing thereby that the solution p of the above AMDDE is a finite measure.
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Example 2. Let X = IR, p the Lebesgue measure on IR, S; = [0,1],¢ > 0, and
q(E) = p(E), E C[0,1]. Consider the AMDDE

p(E) =q(E), EC[0,1].
Here w = 1. For 0 <t <1, we observe that
p(S:) = p([0,t]) = q([0,1]) = ¢.

If t € [1,2], we have
p(5) = a0+ [ oS,
[1,¢]

= 1+/t6(s— 1)ds
= 1+ SEt — 1)
Again, if 2 <t < 3, we obtain
p(S:) =6t +6(t — 2)° — 8,
and so on, the solution p can be found recursively on [0, 00).

Remark 6.1 The above examples suggest a method to compute the solution of an
AMDDE, in the particular case when f(x,y,z) is linear in y and z.
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